Algebraic topology

Introduction



Algebraic Topology at a glance



Algebraic Topology

Topology is the study of the geometric properties of objects.

Algebraic topology is the study of the algebraic properties of spaces that are
associated with their geometry.



Algebraic Topology

Imagine a map of a city. The topology of the city would describe the geometric
properties of the map, such as the locations of streets, buildings, and landmarks, and
how they are connected to each other. Topology focuses on the "raw data" of the
map, which has information about the city's layout and structure.

Algebraic topology would assign numbers to certain features of the map, such as the
number of streets that intersect at a particular point or the distance between two
landmarks. These numbers would form an algebraic structure, which captures
certain properties of the city's geometry in a more abstract way.

Algebraic topology is using this algebraic structure to study the city, rather than the
raw data of the map itself.



Topological Data Analysis

Topological Data Analysis studies data sets that are represented as point clouds,
where each data point represents an observation or measurement. Topological
information are used to extract information about the underlying structure of the
data: for example about the number of connected components, and the
relationships between them.

https://www.datanami.com/201
5/03/25/mapping-the-shape-of-
complex-data-with-ayasdi/




|. Definitions



Point cloud

e Data can be represented as an
unordered sequence of points in a
Euclidean n-dimensional space

® A collection of points that are
unorderly distributed in
n-dimensional space is a point
cloud

e An example of a point cloud is a set
of points uniformly distributed on a

torus



Point cloud

e An example of a point cloud is a set
of points uniformly distributed on a
torus

e Other examples include randomly
distributed points in a box, gaussian
distribution of points in a circle




Point cloud

An example of a point cloud is a set

of points uniformly distributed on a
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distributed points in a box, gaussian
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Graphs

e Graphs consist of a set of vertices that
are connected by edges

e In discrete mathematics vertices can
be abstract, and edges are pairs of
these vertices that do not need to be
connected. For example a graph can be
composed by people and edges are
defined between pairs of people that
know each other
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Graphs

e In topology a graph as a 1-dimensional geometric object, vertices are points and
edges are curves connecting these points in pairs.

Sneddon 2004
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Simple Graphs

A graph is simple if the edge set is a subset of
the set of unordered pairs, which means that

® 1o two edges connect the same two
vertices
® 1o edge joins a vertex to itself

Every simple graph with n vertices is a
subgraph of the complete graph, Kn, that
contains an edge for every pair of vertices:

Edelsbrunner and Harer

Blue: example of simple graph,
subset of complete graph, K5

12



Connected Graphs

e A path between vertices u and v is a sequence of vertices that are connected by
edges: u, ul, u2, .., v
e A simple graph is connected if there is a path between every pair of vertices

Connected graph Disconnected graph
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Trees

e The smallest connected graph is a tree: there is
a unique simple path between every pair of
vertices.

e Removing any one edge from the tree,
disconnects the graph
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Trees

In graph theory, a tree is an (un)directed graph
in which any two vertices are connected by
exactly one path, which is equivalently a
connected acyclic (un)directed graph.

A tree with a defined root is directed and all
paths point away from the root.

A forest is a disjoint union of trees.
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Topological Spaces

A topology on a point set X is a collection U of subsets of X, called open sets, such that:

e X s open and the empty set 2 is open.

e If Ul and U2 are open, then the intersection of the two subsets Ul N U2 is open.
Equivalently, intersections of finitely many open sets are open.

e If Uiis open every i, then the union of all Ui is open.

The pair (X, U) is a called a topological space, but we will usually refer to X as a
topological space.

16



Connected / Disjoint spaces

A function from one topological space to another is continuous if the preimage of
every open set is open. Let f: A— B be a map from A to B, and Y a subset of B. Then
the preimage Y'(f) is the set of all elements in A that map to elements in B.

For example: the function f : R — R is not continuous
(-==,0] -0
(0, ) — 1

because for any 0 < ¢ < 1, (¢, ¢) is open, but f '((—¢, €)) is not.
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Connected / Disjoint spaces

A path is a continuous function from the unit interval, y: [0, 1] — X.
It connects the point y(0) to the point y(1) in X.

Similar to paths in graphs we allow for self-intersections:

v(s) = y(t), with s not equal to t

If there are no self-intersections then the function is injective and the path is simple
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Connected / Disjoint spaces

Definition 1.

A topological space X is path-connected if every pair of points in X is connected by a

path.
Definition II.

A separation of a topological space X is a partition of X =U U W into two non-empty,
open subsets. A topological space is connected if it has no separation.

Connectedness is strictly weaker than path-connectedness, but typically a
path-connected space is also connected.
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Connected / Disjoint spaces

The topological space that has a
separation into two trees is not
path-connected because there is
no path connecting the vertices
that belong to different trees.




Disjoint sets: Algorithm

An example of a connectedness detection algorithm to detect if a set is connected is
the following:

Let’s take a graph with n vertices: [n] =11, 2, .., n}

We store each connected component of the graph as a subset of [n] =11, 2, ..., n}.
Adding one edge at a time and maintaining the sets of edges representing the
components, we find that the graph is connected iff in the end there is only one set
left, namely [n].
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Disjoint sets: Algorithm

Connectedness detection algorithm:
Let’s take a graph with n vertices: [n] =11, 2, .., n}

e Starting from n single sets, each containing one of the vertices, we replace two sets
with their union if there is an edge in the graph connecting them
e For each successful union the number of components is reduced by one

We need two operations for this:
- Find (i) : returns the set that contains i: {i}

- Replace {i}, {j1 with [i,j}: if (i, j) in set of edges replace the two sets by their union
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Knots / Links

A closed curve embedded in R? does not decompose the space but it can be tangled up
in inescapable ways. The field of mathematics that studies such tangles is knot theory.
Its prime subject is a knot which is an embedding « : S' — R?, that is, an injective,
continuous function that is a homeomorphism onto its image. It turns out that any
injective, continuous function from the S' — R’ is an embedding, but this is not true
for general domains. A knot is equivalent to « if it can be continuously deformed into «
without crossing itself during this process.
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Knots / Links

The simplest knot is a circle, also known as a trivial knot.

The “unknot”, the “trefoil” knot, and the “figure-eight” knot.
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Knots / Links (Reidemeister moves)

A knot can be deformed, by drawing its projections to a plane, keeping track of the
under- and over-passes at crossings. For example, using the three fundamental
Reidemeister moves one can prove that the trefoil cannot transform into the unknot:

\

Type I Type 11 Type 111

Figure 1.8: The three types of Reidemeister moves.
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Planar graphs

Only graphs with relatively few edges can be drawn without crossings in the plane. Let
G = (V, E) be a simple, undirected graph. A drawing maps every vertex u € V to a
point f (u) in R2 and every edge uv € E to a path with endpoints f (u) and f (v). The
drawing is an embedding if the points are distinct, the paths are simple and do not
cross each other, and incidences are limited to endpoints. A graph is planar if it has an
embedding in the plane, or if it can be drawn without crossings.
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Surfaces

Consider the open disk of points at distance less than one from the origin, D. We will
call any subset of a topological space that is homemorphic to D an open disk. A

2-manifold (without boundary) is a topological space M whose points all lie in open
disk. Examples of compact 2-manifolds are shown below:
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|l. Complexes
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Simplices

In Topological Data Analysis (TDA), a simplex is a geometric object that generalizes
the notion of a triangle to higher dimensions. A simplex of dimension k is defined as
the convex hull of (k+1) affinely independent points in Euclidean space.

Simplices are fundamental building blocks in TDA, and are used to define simplicial
complexes, which are collections of simplices that can be glued together to form a
topological space.
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Simplices

For example, a 0-dimensional simplex is a point, a 1-simplex is a line, a 2-simplex is a
triangle and a 3-simplex is a tetrahedron.

0 simplex 1 simplex 2 simplex 3 simplex
(Point) (Line) (Triangle) (Tetrahedron)
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Simplices

Simplices have well-understood topological properties (a dimension of the simplex
fully defines its properties) that can be used to study the shape of complex objects. The
number and dimension of simplices in a simplicial complex can provide information
about the topology of the underlying space.
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Simplices

In simplicial complexes, a face of a simplex is a subset of its vertices. For a k-simplex,
which is defined as the convex hull of (k+1) affinely independent points, a face of the
simplex is any subset of its vertices that can be obtained by removing one or more
vertices.

For example, if we have a 2-simplex (i.e., a triangle) with vertices {v1, v2, v3], then its
faces are:

Its vertices: Jv1}, {v21, and {v3}.
Its edges: {v1, v2}, [v2, v3}, and {v3, v1}.

The whole simplex itself: {v1, v2, v3}].
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Simplices

For example, if we have a 2-simplex (i.e., a triangle) with vertices {v1, v2, v3], then its
faces are:

{v1, v2, v3}
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Simplices

Faces of simplices allow us to define the boundary of a simplex and the incidence
relations between simplices in a simplicial complex. This relation allows us to compute
the homology of a simplicial complex, which is a fundamental topological invariant.
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Simplicial complexes

Definition. A simplicial complex is a
finite collection of simplices K such that
c € Kand t <o impliest € K, and o,
o, € Kimplies 6 N o, is either empty or
a face of both.

Intuitively, a simplicial complex is a
collection of simple building blocks (the
simplices) that are glued together in a
way that preserves their combinatorial
structure.
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Simplicial complexes

A simplicial complex K is a set of simplices that satisfies the following conditions:
1. Every face of a simplex from K is also a face in K.

2. The non-empty intersection of any two simplices ¢, , 6, € Kis a face of both ¢, and

(52.
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Simplicial complexes

Using simplicial complexes allows the computation of homology, a fundamental
topological invariant that measures the number and dimension of the "holes" in a
space. Homology can provide insight into the structure and connectivity of a data set,
and can be used to identify topological features such as clusters and loops.

Simplicial complexes also provide a framework for defining and computing other
topological invariants such as persistent homology, which measures the stability of
topological features across different scales of the data.
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Homology

Homology is a mathematical formalism about how a space is connected. Homology
groups provide a mathematical language for the holes in a topological space. In fact,
holes are described indirectly, by focusing on their boundaries. For example, a

one-dimensional hole is described by a set of lines and the absence of their interior:

1 2 vl, v2}, Ivl, v3} and {v2, v3} in K

Ivl, v2, v3} notin K
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Homology

The homology of a simplicial complex is a fundamental topological invariant that
measures the number and dimension of the "holes" in the complex. In algebraic

topology, homology is a way to assign a sequence of homology groups to a topological
space or a simplicial complex.

The k-th homology group of a simplicial complex measures the number of
k-dimensional "holes" in the complex that cannot be filled by a (k+1)-dimensional
surface or "bubble"
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Homology

For example, the Oth homology group counts the number of connected components in
the complex, the 1st homology group counts the number of independent loops or
circles, and so on.
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Homotopy

Homotopy is a relation between continuous maps from one space to another, which
captures the idea of deformation or continuous transformation. Two maps are said to
be homotopic equivalent if one can be continuously deformed into the other without
tearing or cutting the space. Homotopy theory studies the properties of spaces that are
invariant under homotopy, such as their fundamental group, which measures the
number of loops that can be continuously shrunk to a point.
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Homotopy

In TDA, homotopy equivalence relates two spaces or simplicial complexes that can be
continuously deformed into each other.

Two spaces X and Y are said to be homotopy equivalent if there exist continuous maps
f: X ->Y and g: Y -> X such that the compositions g ° f: X -> X and f > g: Y -> Y are
homotopic to the identity maps id, and id,, respectively.

This gives a homotopy equivalence relation and we write X = Y if they have the same
homotopy type.
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Homotopy

Intuitively, a homotopy equivalence between two spaces means that they have the same
topological structure. Any topological property that is invariant under continuous
deformation is the same for both spaces. For example, homotopy equivalent spaces
have the same fundamental group, which measures the number of loops that can be
continuously shrunk to a point.

Evako 2015
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Nerve theorem

Given a finite collection of sets, F, and without assuming that the sets are convex, we
define the nerve to consist of all non-empty subcollections whose sets have a

non-empty common intersection

{XCF|[)X#0}.

The nerve is always an abstract simplicial complex, no matter what sets we have in E
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Nerve theorem

Nerve Theorem.

Let F be a finite collection of closed, convex sets in Euclidean space. Then the nerve of
F and the union of the sets in F have the same homotopy type.

A collection of cover sets
whose union is a triangle with
one holes in the plane. The
nerve is the boundary complex
of the triangle which is
homotopical equivalent

Figure 3: The nerve of a cover of a set of sampled points in the plane.
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Cech complexes

The Cech complex is a simplicial complex constructed from a finite set of points in a
metric space. It is used to approximate the underlying topological structure of the data
set and to compute its persistent homology.
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Cech complexes

The Cech complex is defined as follows:

For each subset of points in the data set whose pairwise distances are less than or equal
to a fixed radius epsilon, we add a simplex to the complex.

The simplices correspond to the subsets of points of all dimensions, including the
empty set and individual points.
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Cech complexes

Let S be a finite set of points in R¢ and write B (r)=x+r B4 for the closed ball with
center x and radius r. The Cech complex of S and radius r is isomorphic to the nerve of
this collection of balls:
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Cech complexes

For a collection of points (in 2D), we add balls around each point of radius &, for

increasing values of e.
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Cech complexes

In Cech complex, two points are connected if their pairwise distance is less than
epsilon. Similarly, for three points to be connected and form a triangle, all epsilon
circles should intersect.
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Vietoris - Rips complexes

The Vietoris-Rips complex is defined as follows:

For each pair of points in the data set whose pairwise distance is less than or equal to a
fixed radius epsilon, we add an edge to the complex.

For each subset of points of size k whose pairwise distances are less than or equal to
epsilon, we add a k-simplex to the complex.
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Vietoris - Rips complexes

Instead of checking all subcollections, we just check pairs and add 2- and
higher-dimensional simplices whenever we can. This simplification leads to the
Vietoris-Rips complex of S and r consisting of all subsets of diameter at most 2r:

Vietoris-Rips(r) = {0 CS|diamo < 2r}.
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Vietoris - Rips complexes

For a collection of points (in 2D), we add balls around each point of radius &, for

increasing values of e.
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Vietoris - Rips complexes

In Vietoris-Rips complex, two points are connected if their pairwise distance is less
than epsilon. Each higher dimensional simplex is added to the simplicial complex, as
long as all the points are already connected by lines.
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Delaunay complexes

To compute the Delaunay complex, one first constructs the Voronoi diagram, which is
a simplicial complex formed by connecting points that are equidistant from each other:
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Delaunay complexes

The second step is to generate the Delaunay triangulation of the data set by connecting
points that have at least one intersecting face:
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Delaunay complexes

The Delaunay complex is generated by filling in the connected components of the

Delaunay triangulation, with higher order intersections:
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Delaunay complexes

The Delaunay complex of a finite set S & R is isomorphic to the nerve of the Voronoi
diagram:

Delaunay = {oc C S| ﬂ Vu # 0}.

uEo
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Alpha complexes

The Alpha complex is a simplicial complex constructed from the finite cells of a
Delaunay Triangulation. The Delaunay complex is an upper bound for the alpha -
complex.

The alpha complex can be seen as a combination of the Delaunay complex and the
Vietoris-Rips complex: it is a subset of the Vietoris-Rips complex formed by removing
simplices whose circum-spheres contain other points of the data set, and a subset of
the Delaunay complex formed by removing simplices whose vertices do not form a
convex set.
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Alpha complexes

The Alpha complex is defined based on a radius alpha that is used as a constraint to
generate a family of subcomplexes from the Delaunay complex.

For each subset of points whose intersection with the union of the open balls centered
at the points of the subset is non-empty and contractible, we add a simplex to the
complex. The simplices correspond to the subsets of points of all dimensions, including
the empty set and individual points.
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Alpha complexes

Let S be a finite set of points in RY and r a non-negative real number. For each u € S,
we let B (r)=u+ rB9 be the closed ball with center u and radius r. The union of these
balls is the set of points at distance at most r from at least one of the points in S.

To decompose the union, we intersect each ball with the corresponding Voronoi cell,
Ru(r) =B (r) N V..

Since balls and Voronoi cells are convex, the R (r) are also convex. Any two of them
are disjoint or overlap along a common piece of their boundaries, and together the
Ru(r) covers the entire union.

61



Alpha complexes

The Alpha complex is isomorphic to the nerve of this cover:
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Alpha complexes

The union of disks is decomposed into convex regions by the Voronoi diagram. The
corresponding alpha complex is superimposed.
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IV. Morse functions
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Morse function

Definition. A Morse function is a smooth function on a manifold, f : M —R, such that
(i) all critical points are non-degenerate, and (ii) the critical points have distinct
function values.
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Reebs graphs

Reeb graphs of Morse functions. More can be said if X = M is a manifold of dimension
d>2and f: M — R is a Morse function. Recall that each point u € R(f ) is the image
of a contour in M. We call u a node of the Reeb graph if y -1 (u) contains a critical
point or, equivalently, if u is the image of a critical point under y. By definition of
Morse function, the critical points have distinct function values, which implies a
bijection between the critical points of f and the nodes of R(f).
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Reebs graphs

The Reebs graph of a Morse function is a collection of critical points and their
connectivity is define by their ordering according to a predefined direction
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V. Persistence
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Persistence homology

The central concept of persistence is motivated by the practical need to cope with
noise in data. This includes defining, recognizing, and possibly eliminating noise.
However, the distinction between noise and feature is not well-defined but rather a
subjective notion. For any particular case, the focus is on a range of scales and it is
desired to ignore everything that is smaller or larger.
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Persistence homology

You can imagine TDA as a magnifying
glass that focuses on a specific aspect
of the data. This can mean a focus on:

- Alength scale

- The skeleton of the data

- The largest components in a
structure
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Elder rule

The Elder rule is a heuristic in TDA that is used to filter out simplices from a simplicial
complex that are unlikely to be significant in terms of the underlying topology of the
data set.

The rule is based on the intuition that simplices that appear early in a filtration are
more likely to be topologically significant than simplices that appear later.

71



Elder rule

Formally, the Elder rule is implemented as follows:
At a juncture, the older of the two merging paths continues and the younger path ends.

By applying the Elder rule to a filtration (for example The Vietoris-Rips complex), the
homology of each simplex in the complex is computed. For each simplex, we record
the filtration level of the first complex at which the simplex appears.
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Filtrations

In TDA, a filtration is a sequence of simplicial complexes that is used to track the
evolution of the topological features of a data set. The simplicial complexes in the
filtration are ordered by inclusion, meaning that each complex in the sequence
contains all the simplices of the previous complexes.

height

73



Filtrations

We obtain persistence by formulating the Elder Rule for the homology groups of all
dimensions. Consider a simplicial complex, K, and a function f : K — R. We require
that f be monotonic by which we mean it is non-decreasing along increasing chains of
faces, that is, f (6) < f (t ) whenever o is a face of t. Monotonicity implies that the
sublevel set, K(a) = f (-, a], is a subcomplex of K for every a € R. Letting m be the
number of simplices in K, we get n + 1 <m + 1 different subcomplexes, which we
arrange as an increasing sequence:

)=KyCK;C...CK,=K.
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Filtrations

For example, for Vietoris-Rips and Cech complexes, the filtration is the increasing
spheres’ radii:
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Persistence barcodes

Persistence keeps track of the first time (birth time) a simplex is observed in a
simplicial complex, and the time (death time) it merges with a larger component,
according to a reference parameter (for example, epsilon in Vietoris-Rips).

A persistence barcode is a graphical representation of the persistence of topological
features in a data set and it provides a summary of the birth and death times of each
topological feature, as well as its lifetime, which reflects its topological significance.
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Persistence harcodes

For a concrete example, assume that R = (R )" is a sequence of complexes
associated to a fixed point cloud for an increasing sequence of parameter values

(e:i)N . There are natural inclusion maps:
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Persistence harcodes

Keeping a record of the birth and death times of each component we can generate

a persistence barcode that describes the lifetime of each topological component
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Persistence harcodes

Point clouds have been
analyzed for a filtration that
generates a sequence of
simplicial complexes. A
connected component (blue)
that persists infinitely is
generated at the first step. At
4th step a cycle (in red) is
formed that turns into two
(5th step) and disappears
when all points are connected.

Chevyrev et al. 2018
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Persistence harcodes

A more advanced example of the
barcodes for a filtration that
generates a sequence of
simplicial complexes.

The rank of H, (R ) (top), equals
the number of intervals in the
barcode (bottom) for H, (R)
intersecting the (dashed) line

Robert Ghrist 2008
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Persistence diagrams

Equivalently to the persistence barcodes, the persistence diagram is a graphical

representation of the persistence of topological features in a data set. The persistence
barcode presents the lifetime of the components as a line (bar), while the persistence
diagram presents the birth and death times of each component in a two dimensional

plane.
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Persistence diagrams

For example, the lifetimes of a four bar barcode can be equivalently represented in a
2D diagram which encodes start - end times.
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Persistence diagrams

For barcodes of data with multiple dimensions (blue: components, red: loops) the
infinite component can be either a large number “inf” or be set to “-1”

83



Persistence diagrams

For barcodes of data with multiple dimensions (blue: components, red: loops) the

infinite component can be either a large number “inf” or be set to “-1”
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Extracting insights from the shape of complex data using topology

Lum et al. 2013
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Extracting insights from the shape of complex data using topology

This paper applies topological methods to study complex high dimensional data sets
by extracting shapes (patterns) and obtaining insights about them. Our method
combines the best features of existing standard methodologies such as principal
component and cluster analyses to provide a geometric representation of complex data
sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets
as well as the analysis of relationships between related data sets. We illustrate the use of
our method by applying it to three very different kinds of data, namely gene expression
from breast tumors, voting data from the United States House of Representatives and
player performance data from the NBA, in each case finding stratifications of the data
which are more refined than those produced by standard methods.
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Extracting insights from the shape of complex data using topology

Mathematical underpinnings of topological data
analysis (TDA)

The approach as applied to a data set in our analysis
pipeline. A) A 3D object (hand) represented as a
point cloud. B) A filter value is applied to the point
cloud and the object is now colored by the values of
the filter function. C) The data set is binned into
overlapping groups. D) Each bin is clustered and a
network is built.

A Original Point Cloud

=

B Coloring by filter value ngbytlt

SE110D

D Clustering and network construction
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Extracting insights from the shape of complex data using topology
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KEGG chemokine pathway.
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Extracting insights from the shape of complex data using topology

Clusteri
Identifying patient outcome in breast ustering

cancer

Single linkage hierarchical clustering
and PCA of the NKI data set.

Q
2
>
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Highlighted in red are the lowERNS
(top panel) and the lowERHS
(bottom panel) patient subgroups.

ER- survived
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Extracting insights from the shape of complex data using topology

US House of Representatives based
on voting behavior

Top panel is the fragmentation
index calculated from the number
of sub-networks formed each year
per political party.
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The bottom 3 panels are the
topological networks for the
members. Networks are constructed
from voting behavior of the
member of the house, (1,0,-1).

Democrat Republican



Extracting insights from the shape of complex data using topology

Basketball team stratification

A) Low resolution map at 20
intervals for each filter

B) High resolution map at 30
intervals for each filter.

The graphs are colored by points
per game and a variance
normalized Euclidean distance
metric is applied.

A
Scoring Guard

Role PlayingGuard

o . Paint Protectors

B Role Players
Offensive EhE
PG Role Playing Guard E

;. s .
5 Allstar NBA 2nd Team

27 Defensive
| PG
Ungrouped | Ball Handling SG

3 Pt Forward \

Allstar NBA

Points Per Game [P B

Low

Scoring Big
/ Ungrouped
Paint Protectors

N
Scoring Paint Protectors

High
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