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Algebraic Topology at a glance
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Algebraic Topology 
Topology is the study of the geometric properties of objects.

Algebraic topology is the study of the algebraic properties of spaces that are 
associated with their geometry.
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Algebraic Topology 
Imagine a map of a city. The topology of the city would describe the geometric 
properties of the map, such as the locations of streets, buildings, and landmarks, and 
how they are connected to each other.  Topology focuses on the "raw data" of the 
map, which has information about the city's layout and structure.

Algebraic topology would assign numbers to certain features of the map, such as the 
number of streets that intersect at a particular point or the distance between two 
landmarks. These numbers would form an algebraic structure, which captures 
certain properties of the city's geometry in a more abstract way.

Algebraic topology is using this algebraic structure to study the city, rather than the 
raw data of the map itself. 

4



Topological Data Analysis
Topological Data Analysis studies data sets that are represented as point clouds, 
where each data point represents an observation or measurement. Topological 
information are used to extract information about the underlying structure of the 
data: for example about the number of connected components, and the 
relationships between them.
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I. Definitions
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Point cloud
● Data can be represented as an 

unordered sequence of points in a 
Euclidean n-dimensional space

● A collection of points that are 
unorderly distributed in 
n-dimensional space is a point 
cloud

● An example of a point cloud is a set 
of points uniformly distributed on a 
torus
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Point cloud
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● An example of a point cloud is a set 
of points uniformly distributed on a 
torus

● Other examples include randomly 
distributed points in a box, gaussian 
distribution of points in a circle



Point cloud
● An example of a point cloud is a set 

of points uniformly distributed on a 
torus

● Other examples include randomly 
distributed points in a box, gaussian 
distribution of points in a circle

9



Graphs
● Graphs consist of a set of vertices that 

are connected by edges 
● In discrete mathematics vertices can 

be abstract, and edges are pairs of 
these vertices that do not need to be 
connected. For example a graph can be 
composed by people and edges are 
defined between pairs of people that 
know each other
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Graphs
● In topology a graph as a 1-dimensional geometric object, vertices are points and 

edges are curves connecting these points in pairs.
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Simple Graphs
A graph is simple if the edge set is a subset of 
the set of unordered pairs, which means that 

● no two edges connect the same two 
vertices 

● no edge joins a vertex to itself

Every simple graph with n vertices is a 
subgraph of the complete graph, Kn, that 
contains an edge for every pair of vertices:
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Edelsbrunner and Harer
Blue: example of simple graph, 
subset of complete graph, K5



Connected Graphs
● A path between vertices u and v is a sequence of vertices that are connected by 

edges: u, u1, u2, …, v
● A simple graph is connected if there is a path between every pair of vertices 
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Trees
● The smallest connected graph is a tree: there is 

a unique simple path between every pair of 
vertices.

● Removing any one edge from the tree, 
disconnects the graph
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Trees
● In graph theory, a tree is an (un)directed graph 

in which any two vertices are connected by 
exactly one path, which is equivalently a 
connected acyclic (un)directed graph. 

● A tree with a defined root is directed and all 
paths point away from the root. 

● A forest is a disjoint union of trees.
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Topological Spaces
A topology on a point set X is a collection U of subsets of X, called open sets, such that:

● X is open and the empty set ∅ is open.
● If U1 and U2 are open, then the intersection of the two subsets U1 ∩ U2 is open. 

Equivalently, intersections of finitely many open sets are open.
● If Ui is open every i, then the union of all Ui is open.

The pair (X, U) is a called a topological space, but we will usually refer to X as a 
topological space. 

16



Connected / Disjoint spaces
A function from one topological space to another is continuous if the preimage of 
every open set is open. Let f: A→ B be a map from A to B, and Y a subset of B. Then 
the preimage Y-1(f) is the set of all elements in A that map to elements in B. 

For example: the function f : R → R is not continuous

(−∞, 0] → 0 

(0, ∞) →  1 

because for any 0 < ε < 1, (−ε, ε) is open, but f -1((−ε, ε)) is not.
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Connected / Disjoint spaces
A path is a continuous function from the unit interval, γ : [0, 1] → X. 

It connects the point γ(0) to the point γ(1) in X. 

Similar to paths in graphs we allow for self-intersections: 

γ(s) = γ(t), with s not equal to t 

 If there are no self-intersections then the function is injective and the path is simple
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Connected / Disjoint spaces
Definition I. 

A topological space X is path-connected if every pair of points in X is connected by a 
path.

Definition II.

A separation of a topological space X is a partition of X =U ∪ W into two non-empty, 
open subsets. A topological space is connected if it has no separation.

Connectedness is strictly weaker than path-connectedness, but typically a 
path-connected space is also connected. 
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Connected / Disjoint spaces
The topological space that has a 
separation into two trees is not 
path-connected because there is 
no path connecting the vertices 
that belong to different trees. 
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Disjoint sets: Algorithm
An example of a connectedness detection algorithm to detect if a set is connected is 
the following:

Let’s take a graph with n vertices: [n] = {1, 2, …, n} 

We store each connected component of the graph as a subset of [n] = {1, 2, . . . , n}. 
Adding one edge at a time and maintaining the sets of edges representing the 
components, we find that the graph is connected iff in the end there is only one set 
left, namely [n].

21



Disjoint sets: Algorithm
Connectedness detection algorithm:

Let’s take a graph with n vertices: [n] = {1, 2, …, n} 

● Starting from n single sets, each containing one of the vertices, we replace two sets 
with their union if there is an edge in the graph connecting them

● For each successful union the number of components is reduced by one

We need two operations for this:

- Find (i) : returns the set that contains i: {i}
- Replace {i}, {j} with {i,j}: if (i, j) in set of edges replace the two sets by their union
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Knots / Links
A closed curve embedded in R3 does not decompose the space but it can be tangled up 
in inescapable ways. The field of mathematics that studies such tangles is knot theory. 
Its prime subject is a knot which is an embedding κ : S1 → R3 , that is, an injective, 
continuous function that is a homeomorphism onto its image. It turns out that any 
injective, continuous function from the S1 → R3 is an embedding, but this is not true 
for general domains. A knot is equivalent to κ if it can be continuously deformed into κ 
without crossing itself during this process.
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Knots / Links
The simplest knot is a circle, also known as a trivial knot. 

The “unknot”, the “trefoil” knot, and the “figure-eight” knot.
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Knots / Links (Reidemeister moves)
A knot can be deformed, by drawing its projections to a plane, keeping track of the 
under- and over-passes at crossings. For example, using the three fundamental 
Reidemeister moves one can prove that the trefoil cannot transform into the unknot:
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Planar graphs
Only graphs with relatively few edges can be drawn without crossings in the plane. Let 
G = (V, E) be a simple, undirected graph. A drawing maps every vertex u ∈ V to a 
point f (u) in R2 and every edge uv ∈ E to a path with endpoints f (u) and f (v). The 
drawing is an embedding if the points are distinct, the paths are simple and do not 
cross each other, and incidences are limited to endpoints. A graph is planar if it has an 
embedding in the plane, or if it can be drawn without crossings. 
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Surfaces 
Consider the open disk of points at distance less than one from the origin, D. We will 
call any subset of a topological space that is homemorphic to D an open disk. A 
2-manifold (without boundary) is a topological space M whose points all lie in open 
disk. Examples of compact 2-manifolds are shown below:
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II. Complexes
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Simplices
In Topological Data Analysis (TDA), a simplex is a geometric object that generalizes 
the notion of a triangle to higher dimensions. A simplex of dimension k is defined as 
the convex hull of (k+1) affinely independent points in Euclidean space.

Simplices are fundamental building blocks in TDA, and are used to define simplicial 
complexes, which are collections of simplices that can be glued together to form a 
topological space.
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Simplices
For example, a 0-dimensional simplex is a point, a 1-simplex is a line, a 2-simplex is a 
triangle and a 3-simplex is a tetrahedron. 
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Simplices
Simplices have well-understood topological properties (a dimension of the simplex 
fully defines its properties) that can be used to study the shape of complex objects. The 
number and dimension of simplices in a simplicial complex can provide information 
about the topology of the underlying space.
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Simplices
In simplicial complexes, a face of a simplex is a subset of its vertices. For a k-simplex, 
which is defined as the convex hull of (k+1) affinely independent points, a face of the 
simplex is any subset of its vertices that can be obtained by removing one or more 
vertices.  

For example, if we have a 2-simplex (i.e., a triangle) with vertices {v1, v2, v3}, then its 
faces are: 

Its vertices: {v1}, {v2}, and {v3}.

Its edges: {v1, v2}, {v2, v3}, and {v3, v1}. 

The whole simplex itself: {v1, v2, v3}.

32



Simplices
For example, if we have a 2-simplex (i.e., a triangle) with vertices {v1, v2, v3}, then its 
faces are: 
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Simplices
Faces of simplices allow us to define the boundary of a simplex and the incidence 
relations between simplices in a simplicial complex. This relation allows us to compute 
the homology of a simplicial complex, which is a fundamental topological invariant.
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Simplicial complexes

Definition. A simplicial complex is a 
finite collection of simplices K such that 
σ ∈ K and τ ≤ σ implies τ ∈ K, and σ, 
σ0 ∈ K implies σ ∩ σ0 is either empty or 
a face of both. 

Intuitively, a simplicial complex is a 
collection of simple building blocks (the 
simplices) that are glued together in a 
way that preserves their combinatorial 
structure.
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Simplicial complexes
A simplicial complex K is a set of simplices that satisfies the following conditions:  

1. Every face of a simplex from K is also a face in K. 

2. The non-empty intersection of any two simplices σ1 , σ2 ∈ K is a face of both σ1 and 
σ2.
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Simplicial complexes
Using simplicial complexes allows the computation of homology, a fundamental 
topological invariant that measures the number and dimension of the "holes" in a 
space. Homology can provide insight into the structure and connectivity of a data set, 
and can be used to identify topological features such as clusters and loops.

Simplicial complexes also provide a framework for defining and computing other 
topological invariants such as persistent homology, which measures the stability of 
topological features across different scales of the data.
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Homology
Homology is a mathematical formalism about how a space is connected. Homology 
groups provide a mathematical language for the holes in a topological space. In fact,  
holes are described indirectly, by focusing on their boundaries. For example, a 
one-dimensional hole is described by a set of lines and the absence of their interior:
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{v1, v2}, {v1, v3} and {v2, v3} in K

{v1, v2, v3} not in K



Homology
The homology of a simplicial complex is a fundamental topological invariant that 
measures the number and dimension of the "holes" in the complex. In algebraic 
topology, homology is a way to assign a sequence of homology groups to a topological 
space or a simplicial complex. 

The k-th homology group of a simplicial complex measures the number of 
k-dimensional "holes" in the complex that cannot be filled by a (k+1)-dimensional 
surface or "bubble". 
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Homology
For example, the 0th homology group counts the number of connected components in 
the complex, the 1st homology group counts the number of independent loops or 
circles, and so on.
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Homotopy
Homotopy is a relation between continuous maps from one space to another, which 
captures the idea of deformation or continuous transformation. Two maps are said to 
be homotopic equivalent if one can be continuously deformed into the other without 
tearing or cutting the space. Homotopy theory studies the properties of spaces that are 
invariant under homotopy, such as their fundamental group, which measures the 
number of loops that can be continuously shrunk to a point.
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Homotopy
In TDA, homotopy equivalence relates two spaces or simplicial complexes that can be 
continuously deformed into each other. 

Two spaces X and Y are said to be homotopy equivalent if there exist continuous maps 
f: X -> Y and g: Y -> X such that the compositions g ∘ f: X -> X and f ∘ g: Y -> Y are 
homotopic to the identity maps idX and idY, respectively.  

This gives a homotopy equivalence relation and we write X ≃ Y if they have the same 
homotopy type.
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Homotopy
Intuitively, a homotopy equivalence between two spaces means that they have the same 
topological structure. Any topological property that is invariant under continuous 
deformation is the same for both spaces. For example, homotopy equivalent spaces 
have the same fundamental group, which measures the number of loops that can be 
continuously shrunk to a point.
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Nerve theorem
Given a finite collection of sets, F, and without assuming that the sets are convex, we 
define the nerve to consist of all non-empty subcollections whose sets have a 
non-empty common intersection

The nerve is always an abstract simplicial complex, no matter what sets we have in F. 
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Nerve theorem
Nerve Theorem. 

Let F be a finite collection of closed, convex sets in Euclidean space. Then the nerve of 
F and the union of the sets in F have the same homotopy type.
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A collection of cover sets 
whose union is a triangle with 
one holes in the plane. The 
nerve is the boundary complex 
of the triangle which is 
homotopical equivalent



Čech complexes 
The Čech complex is a simplicial complex constructed from a finite set of points in a 
metric space. It is used to approximate the underlying topological structure of the data 
set and to compute its persistent homology.
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Čech complexes 
The Čech complex is defined as follows: 

For each subset of points in the data set whose pairwise distances are less than or equal 
to a fixed radius epsilon, we add a simplex to the complex. 

The simplices correspond to the subsets of points of all dimensions, including the 
empty set and individual points. 
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Čech complexes 
Let S be a finite set of points in Rd and write Bx(r) = x + r Bd for the closed ball with 
center x and radius r. The Čech complex of S and radius r is isomorphic to the nerve of 
this collection of balls:
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Čech complexes 
For a collection of points (in 2D), we add balls around each point of radius ε, for 
increasing values of ε. 
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Čech complexes 
In Čech complex, two points are connected if their pairwise distance is less than 
epsilon. Similarly, for three points to be connected and form a triangle, all epsilon 
circles should intersect. 
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Vietoris - Rips complexes 
The Vietoris-Rips complex is defined as follows: 

For each pair of points in the data set whose pairwise distance is less than or equal to a 
fixed radius epsilon, we add an edge to the complex. 

For each subset of points of size k whose pairwise distances are less than or equal to 
epsilon, we add a k-simplex to the complex. 
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Vietoris - Rips complexes 
Instead of checking all subcollections, we just check pairs and add 2- and 
higher-dimensional simplices whenever we can. This simplification leads to the 
Vietoris-Rips complex of S and r consisting of all subsets of diameter at most 2r:
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Vietoris - Rips complexes 
For a collection of points (in 2D), we add balls around each point of radius ε, for 
increasing values of ε. 
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Vietoris - Rips complexes 
In Vietoris-Rips complex, two points are connected if their pairwise distance is less 
than epsilon. Each higher dimensional simplex is added to the simplicial complex, as 
long as all the points are already connected by lines. 
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Delaunay complexes 
To compute the Delaunay complex, one first constructs the Voronoi diagram, which is 
a simplicial complex formed by connecting points that are equidistant from each other:
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Delaunay complexes 
The second step is to generate the Delaunay triangulation of the data set by connecting 
points that have at least one intersecting face: 

56



Delaunay complexes 
The Delaunay complex is generated by filling in the connected components of the 
Delaunay triangulation, with higher order intersections: 
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Delaunay complexes 
The Delaunay complex of a finite set S ⊆ Rd is isomorphic to the nerve of the Voronoi 
diagram:
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Alpha complexes 
The Alpha complex is a simplicial complex constructed from the finite cells of a 
Delaunay Triangulation. The Delaunay complex is an upper bound for the alpha - 
complex. 

The alpha complex can be seen as a combination of the Delaunay complex and the 
Vietoris-Rips complex: it is a subset of the Vietoris-Rips complex formed by removing 
simplices whose circum-spheres contain other points of the data set, and a subset of 
the Delaunay complex formed by removing simplices whose vertices do not form a 
convex set. 
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Alpha complexes 
The Alpha complex is defined based on a radius alpha that is used as a constraint to 
generate a family of subcomplexes from the Delaunay complex. 

For each subset of points whose intersection with the union of the open balls centered 
at the points of the subset is non-empty and contractible, we add a simplex to the 
complex. The simplices correspond to the subsets of points of all dimensions, including 
the empty set and individual points.
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Alpha complexes 
Let S be a finite set of points in Rd and r a non-negative real number. For each u ∈ S, 
we let Bu (r) = u + rBd be the closed ball with center u and radius r. The union of these 
balls is the set of points at distance at most r from at least one of the points in S. 

To decompose the union, we intersect each ball with the corresponding Voronoi cell, 
Ru(r) = Bu (r) ∩ Vu . 

Since balls and Voronoi cells are convex, the R u (r) are also convex. Any two of them 
are disjoint or overlap along a common piece of their boundaries, and together the 
Ru(r) covers the entire union.
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Alpha complexes 
The Alpha complex is isomorphic to the nerve of this cover:
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Alpha complexes 
The union of disks is decomposed into convex regions by the Voronoi diagram. The 
corresponding alpha complex is superimposed. 
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IV. Morse functions
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Morse function
Definition. A Morse function is a smooth function on a manifold, f : M →R, such that 
(i) all critical points are non-degenerate, and (ii) the critical points have distinct 
function values.
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Reebs graphs
Reeb graphs of Morse functions. More can be said if X = M is a manifold of dimension 
d ≥ 2 and f : M → R is a Morse function. Recall that each point u ∈ R(f ) is the image 
of a contour in M. We call u a node of the Reeb graph if ψ −1 (u) contains a critical 
point or, equivalently, if u is the image of a critical point under ψ. By definition of 
Morse function, the critical points have distinct function values, which implies a 
bijection between the critical points of f and the nodes of R(f ).
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Reebs graphs
The Reebs graph of a Morse function is a collection of critical points and their 
connectivity is define by their ordering according to a predefined direction 
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V. Persistence
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Persistence homology
The central concept of persistence is motivated by the practical need to cope with 
noise in data. This includes defining, recognizing, and possibly eliminating noise. 
However, the distinction between noise and feature is not well-defined but rather a 
subjective notion. For any particular case, the focus is on a range of scales and it is 
desired to ignore everything that is smaller or larger. 
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Persistence homology
You can imagine TDA as a magnifying 
glass that focuses on a specific aspect 
of the data. This can mean a focus on:

- A length scale
- The skeleton of the data
- The largest components in a 

structure
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Elder rule
The Elder rule is a heuristic in TDA that is used to filter out simplices from a simplicial 
complex that are unlikely to be significant in terms of the underlying topology of the 
data set. 

The rule is based on the intuition that simplices that appear early in a filtration are 
more likely to be topologically significant than simplices that appear later.
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Elder rule
Formally, the Elder rule is implemented as follows: 

At a juncture, the older of the two merging paths continues and the younger path ends.

By applying the Elder rule to a filtration (for example The Vietoris-Rips complex), the 
homology of each simplex in the complex is computed. For each simplex, we record 
the filtration level of the first complex at which the simplex appears. 
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Filtrations
In TDA, a filtration is a sequence of simplicial complexes that is used to track the 
evolution of the topological features of a data set. The simplicial complexes in the 
filtration are ordered by inclusion, meaning that each complex in the sequence 
contains all the simplices of the previous complexes.
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Filtrations
We obtain persistence by formulating the Elder Rule for the homology groups of all 
dimensions. Consider a simplicial complex, K, and a function f : K → R. We require 
that f be monotonic by which we mean it is non-decreasing along increasing chains of 
faces, that is, f (σ) ≤ f (τ ) whenever σ is a face of τ . Monotonicity implies that the 
sublevel set, K(a) = f −1(−∞, a], is a subcomplex of K for every a ∈ R. Letting m be the 
number of simplices in K, we get n + 1 ≤ m + 1 different subcomplexes, which we 
arrange as an increasing sequence:
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Filtrations
For example, for Vietoris-Rips and Čech complexes, the filtration is the increasing 
spheres’ radii:
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Persistence barcodes
Persistence keeps track of the first time (birth time) a simplex is observed in a 
simplicial complex, and the time (death time) it merges with a larger component, 
according to a reference parameter (for example, epsilon in Vietoris-Rips).

A persistence barcode is a graphical representation of the persistence of topological 
features in a data set and it provides a summary of the birth and death times of each 
topological feature, as well as its lifetime, which reflects its topological significance.
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Persistence barcodes
For a concrete example, assume that R = (Rεi)

N is a sequence of complexes 
associated to a fixed point cloud for an increasing sequence of parameter values 
(εi)

N . There are natural inclusion maps:
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Persistence barcodes
Keeping a record of the birth and death times of each component we can generate 
a persistence barcode that describes the lifetime of each topological component
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Persistence barcodes
Point clouds have been 
analyzed for a filtration that 
generates a sequence of 
simplicial complexes. A 
connected component (blue) 
that persists infinitely is 
generated at the first step. At 
4th step a cycle (in red) is 
formed that turns into two 
(5th step) and disappears 
when all points are connected.

Chevyrev et al. 2018
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Persistence barcodes
A more advanced example of the 
barcodes for a filtration that 
generates a sequence of 
simplicial complexes. 

The rank of Hk(Rεi) (top), equals 
the number of intervals in the 
barcode (bottom) for Hk(R) 
intersecting the (dashed) line 

Robert Ghrist 2008
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Persistence diagrams
Equivalently to the persistence barcodes, the persistence diagram is a graphical 
representation of the persistence of topological features in a data set. The persistence 
barcode presents the lifetime of the components as a line (bar), while the persistence 
diagram presents the birth and death times of each component in a two dimensional 
plane. 

81



Persistence diagrams
For example, the lifetimes of a four bar barcode can be equivalently represented in a 
2D diagram which encodes start - end times.
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Persistence diagrams
For barcodes of data with multiple dimensions (blue: components, red: loops) the 
infinite component can be either a large number “inf” or be set to “-1”
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Persistence diagrams
For barcodes of data with multiple dimensions (blue: components, red: loops) the 
infinite component can be either a large number “inf” or be set to “-1”
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Extracting insights from the shape of complex data using topology

Lum et al. 2013
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Extracting insights from the shape of complex data using topology

This paper applies topological methods to study complex high dimensional data sets 
by extracting shapes (patterns) and obtaining insights about them. Our method 
combines the best features of existing standard methodologies such as principal 
component and cluster analyses to provide a geometric representation of complex data 
sets. Through this hybrid method, we often find subgroups in data sets that traditional 
methodologies fail to find. Our method also permits the analysis of individual data sets 
as well as the analysis of relationships between related data sets. We illustrate the use of 
our method by applying it to three very different kinds of data, namely gene expression 
from breast tumors, voting data from the United States House of Representatives and 
player performance data from the NBA, in each case finding stratifications of the data 
which are more refined than those produced by standard methods.
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Extracting insights from the shape of complex data using topology

Mathematical underpinnings of topological data 
analysis (TDA)

The approach as applied to a data set in our analysis 
pipeline. A) A 3D object (hand) represented as a 
point cloud. B) A filter value is applied to the point 
cloud and the object is now colored by the values of 
the filter function. C) The data set is binned into 
overlapping groups. D) Each bin is clustered and a 
network is built.
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Extracting insights from the shape of complex data using topology

Identifying patient outcome in breast cancer

Two filter functions, L-Infinity centrality 
and survival or relapse were used to 
generate the networks. The top half of 
panels A and B are the networks of patients 
who didn't survive, the bottom half are the 
patients who survived. Panels A and C are 
colored by the average expression of the 
ESR1 gene. Panels B and D are colored by 
the average expression of the genes in the 
KEGG chemokine pathway. 
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Extracting insights from the shape of complex data using topology

Identifying patient outcome in breast 
cancer

Single linkage hierarchical clustering 
and PCA of the NKI data set.

Highlighted in red are the lowERNS 
(top panel) and the lowERHS 
(bottom panel) patient subgroups.

89



Extracting insights from the shape of complex data using topology

US House of Representatives based 
on voting behavior

Top panel is the fragmentation 
index calculated from the number 
of sub-networks formed each year 
per political party.

The bottom 3 panels are the 
topological networks for the 
members. Networks are constructed 
from voting behavior of the 
member of the house, (1,0,-1). 
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Extracting insights from the shape of complex data using topology

Basketball team stratification

A) Low resolution map at 20 
intervals for each filter

B) High resolution map at 30 
intervals for each filter. 

The graphs are colored by points 
per game and a variance 
normalized Euclidean distance 
metric is applied. 
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